
Journal of Global Optimization 8: 91-103, 1996. 91 
~) 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

Estimation of the Lipschitz Constant of a Function 

G. R. WOOD 
Department of Mathematics and Computing, Central Queensland University, Rockhampton, 
Queensland 4702, Australia 

and 

B. E ZHANG 
Department of Mathematics and Statistics, University of Canterbu~, Christchurch, 
New Zealand 

(Received: 1 June 1994; accepted: 10 April 1995) 

Abstract. A number of global optimisation algorithms rely on the value of the Lipschitz constant 
of the objective function. In this paper we present a stochastic method for estimating the Lipschitz 
constant. We show that the largest slope in a fixed size sample of slopes has an approximate Reverse 
Weibull distribution. Such a distribution is fitted to the largest slopes and the location parameter used 
as an estimator of the Lipschitz constant. Numerical results are presented. 
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1. Introduction 

Many global optimisation algorithms are based on the Lipschitz continuity of the 
objective function, g. For such algorithms it is critical to have an estimate of the 
Lipschitz constant. It is also necessary to have a good estimate, since the better 
the estimate the faster such algorithms converge, as described in [6]. Finding the 
Lipschitz constant of a function is itself a global optimisation problem, since the 
Lipschitz constant is the supremum of the magnitudes of directional derivatives of 
the function. 

Existing methods dealing with the Lipschitz constant estimation problem in the 
literature fall into two categories. In the first the analytical form of the objective 
function and its derivatives are known explicitly, while in the second the form is 
unknown and only the function value can be evaluated. We term these objective 
functions white box and black box functions respectively. 

For the white box problem, Shubert [13] gave a univariate example of Lipschitz 
constant estimation using the upper bound of the derivative. Mladineo [9] discussed 

the two dimensional case and chose the upper bound of x / (Og/Ox)  2 + (0g/0y)2 
Y 

as the estimate. Range inclusion techniques of interval analysis due to Moore [10] 
were used by Gourdin, et al. [5] to estimate the Lipschitz constant for the problem 
of maximum likelihood estimation of the three-parameter Weibull distribution. It 
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is evident that any appropriate global optimisation method may be applied to find 
the Lipschitz constant of a white box objective function. 

On the other hand, for the black box problem, we have to find an upper bound 
for the magnitude of the gradient of the function using only the available function 
evaluations. Strongin proposed a method for univariate functions in [14]. After k 
evaluations, the ordered evaluation points xl < X2 < . . .  < Xk and corresponding 
function values 9 ( x  1 ), g ( x 2 ) , . . . ,  g ( xk )  are available and an under-estimation of the 
Lipschitz constant is given by r~ = max i {19(x i )  - g ( x i - 1 ) l / ( x i  - xi-1)}. The 
Strongin estimate is then obtained by multiplying rh by a factor r > 1. There is 
no guarantee, however, that the estimate rm is greater than or equal to the true 
Lipschitz constant. Hansen et al. [7] showed that no matter how large the factor r is 
chosen, the Strongin estimator is an under-estimation of the true Lipschitz constant 
for a class of constructed Lipschitz functions, and hence Strongin's companion 
algorithm may terminate at a local optimum. In [2] de Haan proposed a method for 
estimating the minimum of a function using order statistics, and discussed necessary 
conditions on the objective function. While the method is similar in philosophy 
to our approach, our method requires only objective function evaluations, and not 
those of a derivative, to estimate the Lipschitz constant. 

Our method builds on the ideas of Strongin and de Haan and addresses the 
Lipschitz constant estimation problem for univariate functions alone. The devel- 
opment here can informally be described as follows. Recall that our aim is to find 
the supremum of all slopes ]g( x ) - 9( Y)I ~Ix - yl for distinct points x and y in the 
domain of g. If we sample X and Y uniformly from the domain, then the random 
variable 19(X) - g(Y)I/I  X - Y I itself has cumulative distribution function F,  
which we term the s lope dis tr ibut ion of g. The upper bound of its support is the 
Lipschitz constant we need. Unfortunately we do not know the form of F for an 
arbitrary objective function 9. 

Suppose now that we draw a random sample of say n absolute slopes, and 
consider the distribution of the largest. Provided that F satisfies the Gnedenko 
condition, given in the next section, then the distribution of the largest absolute 
slope is known to be approximately Reverse Weibull. Its location parameter (the 
upper bound of the support) will estimate our Lipschitz constant. 

We formalise these ideas in Section 2 and illustrate the method with numerical 
results in Section 3. In Section 4 we show that for a large class of functions the 
slope distribution does satisfy the Gnedenko condition. In Section 5 we discuss 
directions for future research. 

2. The Method 

For [a, b] an interval in the reals, R, define L ( M )  to be all functions 9 : [a, b] --+ R 
such that Ig(x) - g(Y)[ <- M i x  - Yl for all a <_ x, y <_ b. These are the Lipschitz 
continuous functions from [a, b] to R, with Lipschitz constant M. 



LIPSCHITZ CONSTANT ESTIMATION 93 

We begin by illustrating the method with a simple example. In Figure 1 we show 
the function 9 ( x )  -- x - x 3 / 2  on [ -1 ,  1]. The Lipschitz constant is m = 1 since 
9'(0) = maxx~[_l,1] g ' ( x )  = 1. We choose x and y uniformly and independently 
in [ -1 ,  1]. In the example x = - 0 . 7 8  and y = 0.84. The absolute value of  the 
slope estimate is s = [ g ( x ) -  g ( y ) [ / [ x -  Yl = 0.67. 

'~(x) slope M=I g 

- > X  
y l 

Fig. 1. The objective function g and a sampled slope of 0.67. 

Suppose now that we repeat this procedure many times. Then the cumulative 
distribution of such slope absolute values converges to the cumulative slope distri- 
bution F ,  shown in Figure 2. Note that the associated probability density function 
will have support with upper limit M.  

F(x) 

F/ 

Fig. 2. 

o M >X 

The cumulative distribution function for absolute values of slopes. 

Now take a random sample of size n = 5 from this distribution. Let l be 
the largest of  these absolute slopes. Then the cdf of  I will b e / : 5 ( x ) .  This max- 
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imum slope cumulative distribution function is shown in Figure 3. Note that the 
probability density function of l will have the same support upper bound M. 

F x) 

Fig. 3. 

• > X  
0 M 

The cumulative distribution function for the largest of a sample of five absolute slopes. 

In general, what is the distributional form of F~? If we know the distribution 
towards which F ~ tends as n increases, then the estimate of the location parameter 
M can be used as an estimate of the Lipschitz constant of g. 

The theory of extreme value distributions tells us that there are just three 
distributional types for extreme values. Since the support of F is bounded above, 
standard theory yields that F ~ is approximately Reverse Weibull, provided that the 
original distribution F satisfies the Gnedenko condition 

lim 1 - F ( M - c e )  =c~ 
~--~o+ 1 - F ( M  - e )  

for any c > 0 and some constant k > O. This result first appeared in [4]. 
The cumulative distribution function of the three-parameter Reverse Weibull 

distribution is 

It(l) = { ~ x p { ( - ( u - l ) W ) / v }  if l <  u 
if l > u, 

where u E R is the location parameter, v > 0 is the scale parameter and w > 0 is 
the shape parameter. A precise description of the manner in which F ~ converges 
to a Reverse Weibull distribution is given in Section 4. We fit a Reverse Weibull 
distribution to a sample of largest absolute slopes and use the estimate of the 
location parameter as an estimate of M. 

We now formally present this stochastic procedure to estimate the Lipschitz 
constant M of g. Our method assumes only that the function values can be eval- 
uated. Larger values of the absolute slope will be found for (x, y) pairs chosen 
near the diagonal of [a, b] × [a, b]. For this reason we set up a sampling scheme 
in Step 1 which allows pairs to be chosen according to a uniform distribution on a 
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strip around the diagonal. 

Step 1: Sample the slopes 

95 

Given 5 > O, choose pairs (xi ,  Yi) uniformly on 
{(x ,y)  • [a,b] × [a,b] : ]x - Y] -< 5} and evaluate 

Lg(x ) - 9(y )l 

-- Ix - yil 

Step 2: Calculate the maximum slope Let 

I = m a x { s l , . . . , s ~ } .  

Steps 1 and 2 are performed m times, giving l l , . . . ,  I,~. 

for  i = 1 , . . . , n .  

Step 3: Fit the Reverse Weibull distribution Fit a three-parameter Reverse 
Weibull distribution to I i , . . . , l~. 

Output: Our estimate M ,  o f  M,  is the location parameter of  the fitted Reverse 
Weibull distribution. 

We remark that we have converted the Lipschitz constant estimation problem 
into a routine curve fitting problem. 

3. Numerical Results 

Does the method give good results? We investigate this question now. We begin 
by observing that if a random variable has a Reverse Weibull distribution, then its 
negative has a Weibull distribution. Thus we can employ standard Weibull fitting 
methods. 

Methods for finding maximum likelihood estimates for the three-parameter 
Weibull distribution are discussed in detail in the surveys of Zanakis and Kyparisis 
[16] and Panchang and Gupta [11]. We use a combination of profile likelihood 
and the method of moments to fit the Weibull distribution. For fixed u, we can 
straightforwardly use first and second moments to find v and w. We then select the 
(u, v, w) combination which maximises the likelihood of the observed maximum 
slopes. We remark that Gourdin et al. in [5] proposed a new global algorithm to 
solve this very problem. We have used Gourdin's method whenever suitable to 
check our results. 

We describe results on three test functions. The first test function is the simple 
function x - x3 /3  on [ -1 ,  1] with Lipschitz constant M = 1. The other two 
test functions are drawn from [15, p. 177]: sin x + sin(2x/3) on [3.1,20.4] with 
M 1.67 and 5 = - ~ /=1 s in ( ( /+  1)x + i) on [ -10,  10] with M = 67. Tables I, II 
and III give the estimates of M for various choices of n and m with the sampling 
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per fo rmed  accord ing  to a un i fo rm  distr ibution on [a, b] × [a, b]. Table IV gives  

es t imates  o f  M for  these three funct ions  us ing m = 100, var ious choices  o f  n and 

with ~ = 0.05.  In the next  sect ion we  show that the s lope dis tr ibut ion o f  these test 

funct ions  satisfies the G n e d e n k o  condit ion.  All  o f  the est imates  are given in the 
f o r m  a 4- b, where  a is the mean  and b the s tandard devia t ion over  ten runs for  the 

g iven  n and ra. 

No te  that the es t imates  i m prove  as n and rrz increase. No te  also that use o f  

a small  6 improves  these results, especial ly when  the doma in  interval is large. 

This  is due  to the fact  that  when  the interval is large, sampl ing  f r o m  [a, b] × [a, b] 

rarely p roduces  a pair  (z ,  y)  in the region where  the m a x i m u m  absolute  s lope is 

achieved.  

TABLE I. Lipschitz constant estimators for z - z 3 / 3  on [-1,  1], using uniform 
sampling on [-1,  1] x [-1,  1]. Here M = 1. 

m = 2 5  m = 5 0  m = 7 5  m =  100 

n = 3 0.9990-1-0.0074 1.00204-0.0042 1.0000-4-0.0000 1.0000-t-0.0000 
n = 5 1.0000-1-0.0067 1.00004-0.0000 1.00004-0.0000 1.0000-4-0.0000 

TABLE II. Lipschitz constant estimators for sinz + sin(2z/3) on [3.1,20.4], using 
uniform sampling on [3.1,20.4] x [3.1,20.4]. Here M = 1.67. 

m = 2 5  r a = 5 0  m = 7 5  m =  100 

n = 3 2.41204-0.7605 2.58404-0.6702 2.8590±0.4459 2.00904-0.6839 
n = 5 2.4060±0.7327 2.47604-0.6712 2.61704-0.5781 2.0170±0.6784 
n = 7  1.95204-0.5713 1.9920±0.5289 1.82704-0.2957 1.71404-0.2049 
n = 9  1.58404-0.1327 1.72204-0.1078 1.71204-0.0863 1.71904-0.0926 
n = 11 1.70004-0.1441 1.67504-0.1918 1.67204-0.0379 1.67404-0.0398 

TABLE III. Lipschitz constant estimators for - ~ = 1  sin(( /+ 1)z + i) on [-10, 10], using 
uniform sampling on [-10, 10] × I - t 0 ,  10]. Here M = 67. 

m = 2 5  r a = 5 0  m = 7 5  m = 1 0 0  

n = 3 47.38204-24.5935 54.3096-t-16.0915 61.0462-t-10.3427 60.1370-t-9.9099 
n = 5 59.4610~13.7087 60.00204-12.0155 58.37904-10.7152 59.75704-9.1609 
n = 7 61.58204-6.2873 55.49504-5.1661 62.38404-8.0365 67.71404-6.5446 
n = 9 62.2960-t-10.6238 60.22504-9.8699 66.44004-7.6948 69.45104-6.3622 
n = 11 60.13704-9.9099 63.6500-4-8.6893 68.75004-6.3424 72.0440-t-5.0883 

The  fo l l owing  example  a l lows us to c om pa re  our  numerica l  results with those 

o f  S t rong in ' s  method .  The  test funct ion is a modif ica t ion  o f  that in t roduced in [7] 

by Hansen  e t  a l .  Let  
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T A B L E  IV. Lipschi tz  cons tan t  es t imators  for the three test  func t ions  u s ing  6 = 0.05. 

97 

Func t ion  z - z 3 / 3  sin z + s i n ( 2 z / 3 )  - ~ = 1  s i n ( ( / +  1)x + i) 

Interval  [ -  1, 1] [3.1, 20.4] [ -  10, 10] 

n = 3 m = 100 1 . 0 0 0 0 + 0 . 0 0 0 0  1.7040-t-0.0227 7 3 . 3 8 7 0 ± 1 . 8 8 7 2  

n = 5 m = 100 1.0000-t-0.0000 1 .67904-0.0074 68.40404-0.0975 

n = 7 rn = 100 1.0000-t-0.0000 1.6750-t-0.0085 68 .42504-0 .0474 

n = 9 ra = 100 1 .00004-0.0000 1.67204-0.0042 68.4080-t-0.0282 

( 
J max{2sin(~-~-- t ) ,z)  if 0 _< z < 2//3 

9 ( z )  
z if 2//3<_z<_ 1 

2r a In r 
where/3 = 2 ( ~ )  , A = ce i l{ ln2  r _ l n ( r  + 1) } - 2 and r is the multiplier 

of  Strongin's algorithm. Here cei l (s )  is the smallest integer greater than or equal 
to z. Figure 4 shows 9 for the case where r = 2. 

It can be proved that for any mutiplier r > 1, Strongin's estimate of  the 
Lipschitz constant is always r, but the true Lipschitz constant M is 7r/3, which 

equals 27r~r2r+l j '  ~ if 1 < r <_ 4, as A = 1. Thus the Strongin estimate is an 

under-estimate and hence his algorithm converges to a non-global local optimum. 
Table V compares Lipschitz constant estimates using the Strongin method (S) and 
the Reverse Weibull  method (RW) for two such Hansen test functions on [0, 1]. 

Y 

1/~ i/~ i 
Fig. 4. T h e  H a n s e n  test funct ion  with r = 2 .  

> X  
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TABLE V. Lipschitz constant estimation comparison: the Strongin estimate and the Reverse 
Weibull estimates for a large 5 value and a small 5 value. 

Factor r True M S estimate n rn RW estimate RW estimate 

> Ib -  al 5 = 0.05 

3 100 10.1394 4- 1.6007 8.3052 4- 0.0253 
r = 2 rfl 5 100 8.5384 4- 0.2736 8.3792 4- 0.0042 

= 8.3776 2 7 100 8.4334 + 0.1758 8.3752 4- 0.0042 
9 100 8.3644 4- 0.0585 8.3742 4- 0.0095 
20 100 8.3802 4- 0.0127 8.3772 4- 0.0000 

3 100 13.1292 + 1.7332 9.3182 + 0.0348 
r = 3 7r/3 5 100 9.8362 + 0.5191 9.4192 4- 0.0042 

= 9.4248 3 7 100 9.6892 -4- 0.2656 9.4222 + 0.0053 
9 100 9.3772 4- 0.1124 9.4202 4- 0.0095 

20 100 9.4249 4- 0.0495 9.4262 4- 0.0057 

4. The Gnedenko Condition 

In order that the Reverse Weibull distribution approximate the distribution of  the 

maximum absolute slope, a condition must be satisfied by the original cumulative 

distribution function F. The following proposition presents this result. 

PR OPOSITI ON 1. Let M = sup{s : F(s)  < 1} be finite and L be the largest 
value in a random sample o f  size n drawn from F. Then there are sequences a~ 
and bn > 0 such that Fn(an + bnl) converges pointwise to the standard Reverse 
Weibull distibution I1(l; k) if  and only if for  any c > O, 

lim 1 - F ( M - e Q  =ck  
~ o +  1 -  F ( M  - , )  

the Gnedenko condition. Here H(l;  k) is the Reverse Weibull distribution with 
u = O , v =  l a n d w = k .  

The proof  of  this proposition can be found in [3, pp.53-57 and pp. 87-91],  
The above result tells us that an affine transformation a~ + bnl of the maximum 

absolute slope 1 has an approximate Reverse Weibull distribution. It is easy to 

prove that if the distribution of  a random variable ~ is Reverse Weibull then the 

distribution of  a + b~, for b > 0, is also Reverse Weibull. It follows that the 
maximum absolute slope itself has an approximate Reverse Weibull distribution. 
Formally, F~(l)  is approximately H ((I - a~)/bn; k) . 

This result we used in Section 2. It remains to be shown that the Gnedenko 
condition does hold for the slope distribution F of a wide class of  objective 

functions, g. This is the content of  our main theorem, which we now present. 
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THEOREM 2. Suppose that g E C2p+2[a, b]for some natural number p, that there 
exists a unique z E ( a, b) such that 

]g'(z)[ = M = max ]g'(x)l > 0, 
xE(a,b) 

and that g(1)(z) = O for i = 2 , 3 , . . . , 2 p  with g(2p+l)(z) 7~ O. Given ~ > O, let 
(x, y) be apoint chosen uniformly on {(x, y) E [a, b] × [a, b]: Ix - Yl < 5}, 

Ig(x)-g(y)l/Ix-y[ if x C y  
4x, y) = Ig'(x)l if x = y 

and F denote the cdf of  s. Then the Gnedenko condition holds for F with k = 1/p. 

In order to prove Theorem 2, we need the following preliminaries and lemma. 
Let D = [a,b] × [a ,b] .For  fixed e > 0 a n d e  > 0 l e t  D~ = {(x ,y)  E D : 
x ¢ y and Ig(x) - g ( y ) l / I x -  Yl >- M - e} U {(x ,x)  E D : g'(x) >_ M - ~}. 
Typical D~ and Dc~ are illustrated in Figure 5, with c > 1. 

Y 

>X 

Fig. 5. Level sets D~ and Dc~ for the slope function s of an objective function g. 

Archetti et al. in [1] proposed a framework for global optimisation using ran- 
dom sampling of the objective function. They applied the theory of extreme value 
distributions to global maximisation problems, using the measure of the level set 
of the objective function to investigate the Gnedenko condition. They obtained a 
condition on the objective function which ensures that the measure of the level 
set possesses a certain limit property. This in turn ensures that the distribution of 
objective function values under random sampling satisfies the Gnedenko condi- 
tion. 

Our method is similar to the procedure of Archetti et al., but here the function 
to be maximised is the absolute slope function s of the original objective function 
9, not 9 itself. Our aim has been to find a general condition on g which ensures that 
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the slope distribution satisfies the Gnedenko condition. The next lemma, expressed 
here in terms of the absolute slope function s given in Theorem 2, is due to Archetti 
et al. [1,§2 and Theorems 6 and 7]. It presents conditions on the absolute slope 
function s which ensure that the cumulative distribution F for the absolute value of 
slopes satisfies the Gnedenko condition. We are then able to prove Theorem 2 by 
showing that the conditions of that theorem ensure that those of Lemma 3 hold. 

LEMMA 3. (1)Supposethat s(x, 9) = M +Qzp((x,  y ) -  (x*, y*))+R(l[(x,  y ) -  
(x*, y*)] 12/)), where (x*, y*) is an interior point o l d  at which s(x,  Y) attains its 
unique global maximum M, Q2p((x, y) - (x*, y*)) is a negative (for (x, y) 7A 
(x*, y*)) homogeneous polynomial of  degree 2p, for  p a natural number and 
R(6)/¢ --+ 0 as c --+ O. Then l im~0+ #(D~)/e ~ exists and is finite and positive 
with c~ = 1/p. Here # denotes Lebesgue measure on R 2. 

(2) I f  p(D~) is such that 

lim # ( D ~ ) / e  ~ > 0 
t-+O+ 

for  some ~ > O, then the Gnedenko condition holds for F(t)  = t~((x, 9) ~ D : 
s(x,  y) < t } /p (D) ,  with k = 6t. 

The key to proving Lemma 3(1) is the construction of level sets D~ and D 2 
such that D~ C D~ C D 2. It is then shown that both lim¢~0+ #(D~)/e ~ and 
l im~0+ #(D~) /e  ~ exist and are equal. We use Lemma 3 now to prove Theo- 
rem 2. 

Proof of  Theorem 2. Without loss of generality we can assume that z = g(z) = 
0 and g'(z) = M. (This follows since we can let h(x) = g(x - z) - g(z) and 
prove the result for 4-h as needed.) We can then write 9(x) as 

g(x) = M x  + a2p+lX 2p+I + o(x 2p+l) 

by assumption, where a2p+l = g(2v+l)(o)/(2p + 1)!. Since gt(0) is assumed to be 
the unique maximum of 9 j, we must have a2p+ 1 < 0. Also diam(D~) -+ 0 as e -+ 0 
else the uniqueness assumption is contradicted. 

Since gt(0) = M > 0, g is increasing near 0, so we have 

t g ( x )  - a ( y ) l  _ g ( x )  - g ( 9 )  

- 9J x - v 

for any pair x ¢ y sufficiently close to 0. We prove that (g(x) - g (y ) ) / ( x  - y) is 
a function which satisfies the condition of Lemma 3(1). 

Since diam(D~) -~ 0 as ~ - ,  0, for ¢ sufficiently small both Dc and Doe 
are contained in D. Consider a point (x, Y) in De. Then the rearranged Taylor 
expansion of g(x) about y yields 

( g ( x )  - g ( y ) ) / ( x  - y )  
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g"(Y) 9(2p+l)(Y) (x . 

= g'(v)+ ~ ( x -  y ) + . . . +  (2v+ 1)! ~ -Y)~  + 
g(2p+2)(@), 

~ - ~ 7  V ~,X- y)2p+l 

where @ is between x and y. Writing the Taylor expansion of g(y), g ' (y ) , . . . ,  
g(2p+l)(y) about 0, we have 

( v ( x )  - g ( v ) ) / ( x  - v )  

g(2p+l)(0) ~ 2p g(2p+2)(~l ) y2p+l 
= M +  ~ Y + ( 2 p + l ) !  

L[g(2p+l)(0)  ,t2p-I g(2p+2)(~2) y2p]( x 
+ 2 ! ~ ( 2 p -  1)!" + ( 2 p + l ) !  - y ) + ' ' "  

[g(Zp~ g(2p+2)(~Zp+l) 1 )(0) + y](x  - y)Zp + 
+ ( 2 p +  1)! . (2p+ 1)! 
• .q(2p+2)(~'0) ( __ y)ap+l 

= M + g(2p+l)(0) 2h~ 0 ( 2 p +  l)! y2p-k(x _ y)k q_ 
(2p+ 1)! = (2p--k~(k-q- 1)! 

R(~o, ~l, ...,¢2p+1, x, y) 

where R(Co, ~1, "", ~2p+l, X, y) equals 

g (2p+2) (~l) y2p+ 1 g (2p+2) (~2p+ 1 ) , 
(2p+ 1)! + " +  (2-77V)., > x -  v) 2,~ 

g(2p+2)(@) (x -- y)2p+l 

and CI, ..., @p+l lie between 0 and y. Now 

2p (2p q- 1 ) ! 2p k 
E (2p 7 k-~.T(~- 4_ 1)! y2p-k(x - y)k Z/-~2p+l .2p-k = --~+l ~ ~ c'~x~vk-'(-I ? -~ 
k=0 h=0 i=0 

2p 2p 
K-' ,~2p+lc~k~ 1)k-i = E xiy2p-i ~ v"k+l '~i k--*, 

i=0 h=i 

By using the generalised Vandermonde convolution formula of recurrence [11, 
2p t,-~2p+lg-~k[ 1)k_ i 1, for i 0, 1, 2p. p. 8] it can be shown that Ek=i "~k+~ "~i v . . . . . .  , 

Therefore 
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9(2p+1)(0)  2p 
- M + (2p-I- 1)! Exiyep-i  -~- R ( ¢ ° ' ¢ 1 '  "'"¢2p+I'x'Y) 

i=o 

It is now readily checked that s(x ,  y) is a function of  the form described in 
Lemma 3(1). Lemma  3(1) thus shows that l im~0+  #(D~) /c  ~ exists and is finite 
and posit ive with c~ _ 1/p. This limiting result rests on the fact that we sample 
uniformly from a &strip around the diagonal of [a, b] x [a, hi, and that s assumes 
its maximum value on the diagonal. Lemma 3(2) then gives that the Gnedenko 
condition holds for F( t )  = #{(x ,  y) E D : s(x ,  y) <_ t } / # ( D )  with k = 1/p. In a 
neighbourhood of  M this coincides with the cdf of  s, so Theorem 2 follows. 

The requirement that the first non-zero derivative at z should occur for an odd 
order ensures that there is no contradiction to the assumption that [g'(z)[ = M = 
maxx6(a,b ) ]g'(x)]. It can be confirmed that the three test functions discussed in 
Section 3 satisfy the conditions of  Theorem 2. We remark that the proof for an 
objective function g containing only linear and cubic terms is much easier, as in 
this case the level sets Dce and De are elliptical. 

The fol lowing propositions, based on Theorem 2, show that the assumption that 
g' assumes its maximum absolute value at a unique point or an interior point can 
be removed. Both propositions can be proved in a straightforward fashion. 

PROPOSITION 4. Let g C C2p+2(a, b) with finitely many points  zl , z2, . . . , z~  E 
(a,b)  such that Ig'(zi)l = supz6(a,b)lg'(x)[ = M > 0 and 9"(zi)  - - 
gZP(zi) = 0 but g(ZP+O(zi) ¢ O, f o r  i = 1,2, ..., ra. Given 5 > O, let (x,  y ) b e  
chosen uniformly on { ( x , y ) E  [a,b] × [a,b] : I x -  Yl < 5}, s = I g ( x ) -  g (Y) l /  
I x - Y l and F denote the cumulative distribution function ofs .  Then the Gnedenko 
condition holds f o r  F. 

PROPOSITION 5. Suppose thatg E C2p+2(a, b)with lin~__,0+ (g(b) - g(b - e))/e 
= M > O, g"(b) = g'"(b) . . . . .  g(2p+l)(b) = O, g(2p+l)(b) < O, where 
g(k)(b) denotes the left kth order derivative, and Ig'(x)l < M on (a, b). Given 
5 > O, let (x,  y) be chosen uniformly on {(x, y) E [a, b] × [a, b] : Ix - Yl < 5}, 

= I g ( x )  - g ( y ) l / I x  - yl  and F denote the cumulative distribution function o fs .  
Then the Gnedenko condition holds f o r  F. 

5. Summary and Future Directions 

In this paper we have presented a stochastic method for estimating the Lipschitz 
constant of  a function of  a single variable. The method is clearly successful, but 
computationally intensive. Three directions for further research suggest them- 
selves. Firstly, how does the idea used here fare for functions of  more than one 
variable? The authors have some partial results which will be developed and pre- 
sented in another paper. Secondly, how should the slope sample size n and the size 
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of  the samples  o f  m a x i m u m  absolute  s lope m be chosen?  Ev iden t ly  the answer  

depends  on the ob jec t ive  funct ion  9, its domain  and the value o f  ~. Thirdly,  it 

r emains  to in ter lock  the Lipschi tz  constant  es t imator  with Lipschi tz  based  opt imi-  

sat ion a lgor i thms.  
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